NVIDIA® Jetson™ TX2 series modules give you exceptional speed and power efficiency in an embedded AI computing device. Each supercomputer-on-a-module brings true AI computing to the edge with an NVIDIA Pascal™ GPU, up to 8 GB of memory and 59.7 GB/s of memory bandwidth, and a wide range of standard hardware interfaces.
Explore new AI capabilities at the edge with NVIDIA Jetson TX2 4GB. This embedded computer lets you run neural networks with double the compute performance or double the power efficiency of Jetson TX1.
Features
SIze
MINIMIZE YOUR FOOTPRINT Now you can get exceptionally high compute, accuracy, and power efficiency in a module the size of a credit card. Its small 50 mm x 87 mm size enables real deep learning applications in small form-factor products like drones and more.
Performance
MAXIMIZE YOUR PERFORMANCE Experience more than double the performance or twice the energy efficiency of Jetson TX1. It’s all made possible by Jetson TX2’s 256-core NVIDIA Pascal architecture and 8 GB memory for the fastest compute and inference.
Power
OPTIMIZE YOUR POWER EFFICIENCY With Jetson TX2, you can now run large, deep neural networks for higher accuracy on edge devices. At just 7.5 watts, it delivers 25X more energy efficiency than a state-of-the-art desktop-class CPU. This makes it ideal for real-time processing in applications where bandwidth and latency can be an issue. These include factory robots, commercial drones, enterprise collaboration devices, intelligent cameras for smart cities.
A JETSON TX2 FOR ANY APPLICATION The extended Jetson TX2 family of embedded modules provides up to 2.5X the performance of Jetson Nano in as little as 7.5 W. Jetson TX2 NX offers pin and form-factor compatibility with Jetson Nano, while Jetson TX2, TX2 4GB, and TX2i all share the original Jetson TX2 form-factor. The rugged Jetson TX2i is ideal for settings including industrial robots and medical equipment.
Specifications
GPU
NVIDIA Pascal™architecture with 256 NVIDIA CUDA cores 1.3 TFLOPS (FP16)
CPU
Dual-core Denver 2 64-bit CPU and quad-core ARM A57 complex
Use left/right arrows to navigate the slideshow or swipe left/right if using a mobile device
Choosing a selection results in a full page refresh.
Press the space key then arrow keys to make a selection.
Shopping Cart
Logging you in
{"id":6620749267030,"title":"NVIDIA Jetson TX2 4GB","handle":"nvidia-jetson-tx2-4gb-online","description":"\u003cp\u003eNVIDIA® Jetson™ TX2 series modules give you exceptional speed and power efficiency in an embedded AI computing device. Each supercomputer-on-a-module brings true AI computing to the edge with an NVIDIA Pascal™ GPU, up to 8 GB of memory and 59.7 GB\/s of memory bandwidth, and a wide range of standard hardware interfaces.\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eExplore new AI capabilities at the edge with NVIDIA Jetson TX2 4GB. This embedded computer lets you run neural networks with double the compute performance or double the power efficiency of Jetson TX1.\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eFeatures\u003c\/h5\u003e\n\u003cp\u003eSIze\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eMINIMIZE YOUR FOOTPRINT\u003c\/strong\u003e\u003cbr\u003eNow you can get exceptionally high compute, accuracy, and power efficiency in a module the size of a credit card. Its small 50 mm x 87 mm size enables real deep learning applications in small form-factor products like drones and more.\u003c\/p\u003e\n\u003cp\u003ePerformance \u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eMAXIMIZE YOUR PERFORMANCE\u003c\/strong\u003e\u003cbr\u003eExperience more than double the performance or twice the energy efficiency of Jetson TX1. It’s all made possible by Jetson TX2’s 256-core NVIDIA Pascal architecture and 8 GB memory for the fastest compute and inference.\u003c\/p\u003e\n\u003cp\u003ePower\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eOPTIMIZE YOUR POWER EFFICIENCY\u003c\/strong\u003e\u003cbr\u003eWith Jetson TX2, you can now run large, deep neural networks for higher accuracy on edge devices. At just 7.5 watts, it delivers 25X more energy efficiency than a state-of-the-art desktop-class CPU. This makes it ideal for real-time processing in applications where bandwidth and latency can be an issue. These include factory robots, commercial drones, enterprise collaboration devices, intelligent cameras for smart cities.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eA JETSON TX2 FOR ANY APPLICATION\u003c\/strong\u003e\u003cbr\u003eThe extended Jetson TX2 family of embedded modules provides up to 2.5X the performance of Jetson Nano in as little as 7.5 W. Jetson TX2 NX offers pin and form-factor compatibility with Jetson Nano, while Jetson TX2, TX2 4GB, and TX2i all share the original Jetson TX2 form-factor. The rugged Jetson TX2i is ideal for settings including industrial robots and medical equipment.\u003c\/p\u003e\n\u003ch5\u003eSpecifications\u003c\/h5\u003e\n\u003ctable data-mce-fragment=\"1\" style=\"width: 472.188px;\" align=\"center\" border=\"1\" cellpadding=\"0\" cellspacing=\"0\"\u003e\n\u003ctbody data-mce-fragment=\"1\"\u003e\n\u003ctr data-mce-fragment=\"1\"\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 103px;\" class=\"tableCLdata\"\u003eGPU\u003c\/td\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 363.188px;\" colspan=\"2\" class=\"tableCRdata\"\u003eNVIDIA Pascal\u003csup data-mce-fragment=\"1\"\u003e™\u003c\/sup\u003e\u003cspan data-mce-fragment=\"1\"\u003e \u003c\/span\u003earchitecture with 256 NVIDIA CUDA cores\u003cbr data-mce-fragment=\"1\"\u003e1.3 TFLOPS (FP16)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr data-mce-fragment=\"1\"\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 103px;\" class=\"tableCLdata\"\u003eCPU\u003c\/td\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 363.188px;\" colspan=\"2\" class=\"tableCRdata\"\u003eDual-core Denver 2 64-bit CPU and quad-core ARM A57 complex\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr data-mce-fragment=\"1\"\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 103px;\" class=\"tableCLdata\"\u003eMemory\u003c\/td\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 363.188px;\" colspan=\"2\" class=\"tableCRdata\"\u003e4 GB 128-bit LPDDR4\u003cbr data-mce-fragment=\"1\"\u003e1600 MHz - 51.2 GBs\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr data-mce-fragment=\"1\"\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 103px;\" class=\"tableCLdata\"\u003eStorage\u003c\/td\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 363.188px;\" colspan=\"2\" class=\"tableCRdata\"\u003e16 GB eMMC 5.1\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr data-mce-fragment=\"1\"\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 103px;\" class=\"tableCLdata\"\u003eVideo Encode\u003c\/td\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 363.188px;\" colspan=\"2\" class=\"tableCRdata\"\u003e500 MP\/sec\u003cbr data-mce-fragment=\"1\"\u003e1x 4K @ 60 (HEVC)\u003cbr data-mce-fragment=\"1\"\u003e3x 4K @ 30 (HEVC)\u003cbr data-mce-fragment=\"1\"\u003e4x 1080p @ 60 (HEVC)\u003cbr data-mce-fragment=\"1\"\u003e8x 1080p @ 30 (HEVC)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr data-mce-fragment=\"1\"\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 103px;\" class=\"tableCLdata\"\u003eVideo Decode\u003c\/td\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 363.188px;\" colspan=\"2\" class=\"tableCRdata\"\u003e1000 MP\/sec\u003cbr data-mce-fragment=\"1\"\u003e2x 4K @ 60 (HEVC)\u003cbr data-mce-fragment=\"1\"\u003e4x 4K @ 30 (HEVC)\u003cbr data-mce-fragment=\"1\"\u003e7x 1080p @ 60 (HEVC)\u003cbr data-mce-fragment=\"1\"\u003e14x 1080p @ 30 (HEVC)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr data-mce-fragment=\"1\"\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 103px;\" rowspan=\"2\" class=\"tableCLdata\"\u003eConnectivity\u003c\/td\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 363.188px;\" colspan=\"2\" class=\"tableCRdata\"\u003eWi-Fi requires external chip\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr data-mce-fragment=\"1\"\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 363.188px;\" colspan=\"2\" class=\"tableCRdata\"\u003e10\/100\/1000 BASE-T Ethernet\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr data-mce-fragment=\"1\"\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 103px;\" class=\"tableCLdata\"\u003eCamera\u003c\/td\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 363.188px;\" colspan=\"2\" class=\"tableCRdata\"\u003e12 lanes MIPI CSI-2, D-PHY 1.2 (30 Gbps)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr data-mce-fragment=\"1\"\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 103px;\" class=\"tableCLdata\"\u003eDisplay\u003c\/td\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 363.188px;\" colspan=\"2\" class=\"tableCRdata\"\u003eHDMI 2.0 \/ eDP 1.4 \/ 2x DSI \/ 2x DP 1.2\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr data-mce-fragment=\"1\"\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 103px;\" class=\"tableCLdata\"\u003eUPHY\u003c\/td\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 363.188px;\" colspan=\"2\" class=\"tableCRdata\"\u003eGen 2 | 1x4 + 1x1 OR 2x1 + 1x2, USB 3.0 + USB 2.0\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr data-mce-fragment=\"1\"\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 103px;\" class=\"tableCLdata\"\u003eSize\u003c\/td\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 363.188px;\" colspan=\"2\" class=\"tableCRdata\"\u003e87 mm x 50 mm\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr data-mce-fragment=\"1\"\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 103px;\" class=\"tableCLdata\"\u003eMechanical\u003c\/td\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 363.188px;\" colspan=\"2\" class=\"tableCRdata\"\u003e400-pin connector with Thermal Transfer Plate (TTP)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003c\/tbody\u003e\n\u003c\/table\u003e\n\u003cbr\u003e","published_at":"2022-12-06T11:11:47+05:30","created_at":"2021-08-24T15:58:05+05:30","vendor":"ThinkRobotics","type":"Single Board Computers","tags":["Jetson GPU","Jetson module","jetson nano","Jetson Nano Case","jetson xavier","JT-SOM","NVDA","nvidia","nvidia gpu","nvidia jetson","nvidia nx","nvidia tx2","NVIDIA-COM","SBC1","tx2","tx2 4gb","tx2 nx"],"price":3099999,"price_min":3099999,"price_max":3099999,"available":true,"price_varies":false,"compare_at_price":3999999,"compare_at_price_min":3999999,"compare_at_price_max":3999999,"compare_at_price_varies":false,"variants":[{"id":39516445507670,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"SBC1103-MOD4","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"NVIDIA Jetson TX2 4GB","public_title":null,"options":["Default Title"],"price":3099999,"weight":799,"compare_at_price":3999999,"inventory_management":"shopify","barcode":"39516445507670","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/thinkrobotics.com\/cdn\/shop\/products\/nvidia-jetson-tx2-module-2c50-d.jpg?v=1629801018","\/\/thinkrobotics.com\/cdn\/shop\/products\/embedded-photo-jetson-tx2-l-product-photography-low-res-2000px-03_web_1.png?v=1629801018"],"featured_image":"\/\/thinkrobotics.com\/cdn\/shop\/products\/nvidia-jetson-tx2-module-2c50-d.jpg?v=1629801018","options":["Title"],"media":[{"alt":"NVIDIA Jetson TX2 4GB Online","id":21213085925462,"position":1,"preview_image":{"aspect_ratio":1.78,"height":354,"width":630,"src":"\/\/thinkrobotics.com\/cdn\/shop\/products\/nvidia-jetson-tx2-module-2c50-d.jpg?v=1629801018"},"aspect_ratio":1.78,"height":354,"media_type":"image","src":"\/\/thinkrobotics.com\/cdn\/shop\/products\/nvidia-jetson-tx2-module-2c50-d.jpg?v=1629801018","width":630},{"alt":"NVIDIA Jetson TX2 4GB Online","id":21213085958230,"position":2,"preview_image":{"aspect_ratio":1.357,"height":737,"width":1000,"src":"\/\/thinkrobotics.com\/cdn\/shop\/products\/embedded-photo-jetson-tx2-l-product-photography-low-res-2000px-03_web_1.png?v=1629801018"},"aspect_ratio":1.357,"height":737,"media_type":"image","src":"\/\/thinkrobotics.com\/cdn\/shop\/products\/embedded-photo-jetson-tx2-l-product-photography-low-res-2000px-03_web_1.png?v=1629801018","width":1000}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003cp\u003eNVIDIA® Jetson™ TX2 series modules give you exceptional speed and power efficiency in an embedded AI computing device. Each supercomputer-on-a-module brings true AI computing to the edge with an NVIDIA Pascal™ GPU, up to 8 GB of memory and 59.7 GB\/s of memory bandwidth, and a wide range of standard hardware interfaces.\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eExplore new AI capabilities at the edge with NVIDIA Jetson TX2 4GB. This embedded computer lets you run neural networks with double the compute performance or double the power efficiency of Jetson TX1.\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eFeatures\u003c\/h5\u003e\n\u003cp\u003eSIze\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eMINIMIZE YOUR FOOTPRINT\u003c\/strong\u003e\u003cbr\u003eNow you can get exceptionally high compute, accuracy, and power efficiency in a module the size of a credit card. Its small 50 mm x 87 mm size enables real deep learning applications in small form-factor products like drones and more.\u003c\/p\u003e\n\u003cp\u003ePerformance \u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eMAXIMIZE YOUR PERFORMANCE\u003c\/strong\u003e\u003cbr\u003eExperience more than double the performance or twice the energy efficiency of Jetson TX1. It’s all made possible by Jetson TX2’s 256-core NVIDIA Pascal architecture and 8 GB memory for the fastest compute and inference.\u003c\/p\u003e\n\u003cp\u003ePower\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eOPTIMIZE YOUR POWER EFFICIENCY\u003c\/strong\u003e\u003cbr\u003eWith Jetson TX2, you can now run large, deep neural networks for higher accuracy on edge devices. At just 7.5 watts, it delivers 25X more energy efficiency than a state-of-the-art desktop-class CPU. This makes it ideal for real-time processing in applications where bandwidth and latency can be an issue. These include factory robots, commercial drones, enterprise collaboration devices, intelligent cameras for smart cities.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eA JETSON TX2 FOR ANY APPLICATION\u003c\/strong\u003e\u003cbr\u003eThe extended Jetson TX2 family of embedded modules provides up to 2.5X the performance of Jetson Nano in as little as 7.5 W. Jetson TX2 NX offers pin and form-factor compatibility with Jetson Nano, while Jetson TX2, TX2 4GB, and TX2i all share the original Jetson TX2 form-factor. The rugged Jetson TX2i is ideal for settings including industrial robots and medical equipment.\u003c\/p\u003e\n\u003ch5\u003eSpecifications\u003c\/h5\u003e\n\u003ctable data-mce-fragment=\"1\" style=\"width: 472.188px;\" align=\"center\" border=\"1\" cellpadding=\"0\" cellspacing=\"0\"\u003e\n\u003ctbody data-mce-fragment=\"1\"\u003e\n\u003ctr data-mce-fragment=\"1\"\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 103px;\" class=\"tableCLdata\"\u003eGPU\u003c\/td\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 363.188px;\" colspan=\"2\" class=\"tableCRdata\"\u003eNVIDIA Pascal\u003csup data-mce-fragment=\"1\"\u003e™\u003c\/sup\u003e\u003cspan data-mce-fragment=\"1\"\u003e \u003c\/span\u003earchitecture with 256 NVIDIA CUDA cores\u003cbr data-mce-fragment=\"1\"\u003e1.3 TFLOPS (FP16)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr data-mce-fragment=\"1\"\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 103px;\" class=\"tableCLdata\"\u003eCPU\u003c\/td\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 363.188px;\" colspan=\"2\" class=\"tableCRdata\"\u003eDual-core Denver 2 64-bit CPU and quad-core ARM A57 complex\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr data-mce-fragment=\"1\"\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 103px;\" class=\"tableCLdata\"\u003eMemory\u003c\/td\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 363.188px;\" colspan=\"2\" class=\"tableCRdata\"\u003e4 GB 128-bit LPDDR4\u003cbr data-mce-fragment=\"1\"\u003e1600 MHz - 51.2 GBs\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr data-mce-fragment=\"1\"\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 103px;\" class=\"tableCLdata\"\u003eStorage\u003c\/td\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 363.188px;\" colspan=\"2\" class=\"tableCRdata\"\u003e16 GB eMMC 5.1\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr data-mce-fragment=\"1\"\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 103px;\" class=\"tableCLdata\"\u003eVideo Encode\u003c\/td\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 363.188px;\" colspan=\"2\" class=\"tableCRdata\"\u003e500 MP\/sec\u003cbr data-mce-fragment=\"1\"\u003e1x 4K @ 60 (HEVC)\u003cbr data-mce-fragment=\"1\"\u003e3x 4K @ 30 (HEVC)\u003cbr data-mce-fragment=\"1\"\u003e4x 1080p @ 60 (HEVC)\u003cbr data-mce-fragment=\"1\"\u003e8x 1080p @ 30 (HEVC)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr data-mce-fragment=\"1\"\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 103px;\" class=\"tableCLdata\"\u003eVideo Decode\u003c\/td\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 363.188px;\" colspan=\"2\" class=\"tableCRdata\"\u003e1000 MP\/sec\u003cbr data-mce-fragment=\"1\"\u003e2x 4K @ 60 (HEVC)\u003cbr data-mce-fragment=\"1\"\u003e4x 4K @ 30 (HEVC)\u003cbr data-mce-fragment=\"1\"\u003e7x 1080p @ 60 (HEVC)\u003cbr data-mce-fragment=\"1\"\u003e14x 1080p @ 30 (HEVC)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr data-mce-fragment=\"1\"\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 103px;\" rowspan=\"2\" class=\"tableCLdata\"\u003eConnectivity\u003c\/td\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 363.188px;\" colspan=\"2\" class=\"tableCRdata\"\u003eWi-Fi requires external chip\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr data-mce-fragment=\"1\"\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 363.188px;\" colspan=\"2\" class=\"tableCRdata\"\u003e10\/100\/1000 BASE-T Ethernet\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr data-mce-fragment=\"1\"\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 103px;\" class=\"tableCLdata\"\u003eCamera\u003c\/td\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 363.188px;\" colspan=\"2\" class=\"tableCRdata\"\u003e12 lanes MIPI CSI-2, D-PHY 1.2 (30 Gbps)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr data-mce-fragment=\"1\"\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 103px;\" class=\"tableCLdata\"\u003eDisplay\u003c\/td\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 363.188px;\" colspan=\"2\" class=\"tableCRdata\"\u003eHDMI 2.0 \/ eDP 1.4 \/ 2x DSI \/ 2x DP 1.2\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr data-mce-fragment=\"1\"\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 103px;\" class=\"tableCLdata\"\u003eUPHY\u003c\/td\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 363.188px;\" colspan=\"2\" class=\"tableCRdata\"\u003eGen 2 | 1x4 + 1x1 OR 2x1 + 1x2, USB 3.0 + USB 2.0\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr data-mce-fragment=\"1\"\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 103px;\" class=\"tableCLdata\"\u003eSize\u003c\/td\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 363.188px;\" colspan=\"2\" class=\"tableCRdata\"\u003e87 mm x 50 mm\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr data-mce-fragment=\"1\"\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 103px;\" class=\"tableCLdata\"\u003eMechanical\u003c\/td\u003e\n\u003ctd data-mce-fragment=\"1\" style=\"width: 363.188px;\" colspan=\"2\" class=\"tableCRdata\"\u003e400-pin connector with Thermal Transfer Plate (TTP)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003c\/tbody\u003e\n\u003c\/table\u003e\n\u003cbr\u003e"}
Unable to install the card because there was no screw included. The wifi antennas aren't great quality but they'll do the job. Overall, decent service but upset about the lack of screw inside. Thanks.
The item was packed well and securely. The delivery was quick too. But not sure why, they did not include a screw for installing the wifi card. Not sure why.